郑州中航维尔科技有限公司
地址 :荥阳市城关乡西史工业园区
联系人:吴经理
手机:15238382266/15238382299
电话:0371-85706199
QQ: 779665820
邮箱:779665820@qq.com
网址:www.zh-zk.com
真空炉生产厂家的高温空气燃烧技术是近10年来高速发展的一种新型燃烧技术,具有、节能和低污染等特性,目前正得到越来越广泛的应用。介绍高温空气燃烧技术的由来、工作原理、特点及应用效果,并分析了这种燃烧技术在我国的应用前景。
关键词:换热器 蓄热器 高温空气燃烧
1 引言
在冶金、机械、建材等部门所用的许多工业燃烧炉中,排出的废气温度高达600~1100℃。为充分有效地把这部分热量加以利用,许多研究人员在这方面做了大量研究工作。其中利用热回收装置回收烟气带走的余热,加热助燃用空气和燃气,再回送到炉子燃烧室,是一项有效且收益较大的措施。
早期的回收余热用于空气预热的热回收装置主要是间壁式换热器和蓄热式换热器。间壁式换热器气体流向不变,工作状况稳定,但其预热温度不超过700℃,且寿命较短,热回收率低,排放的烟气仍有较高温度。蓄热式换热器预热温度可达1200℃,而排烟温度较低,可接近300℃,且寿命较长,热回收率可达70%。但早期这种蓄热式换热器的蓄热体采用格子砖材料,综合传热系数较低,蓄热体体积庞大、换向时间长、预热温度波动较大。同时,烟气的排出温度仍有300~600℃,换热设备要求既耐热、又气密,使结构复杂、操作不灵活。综合考虑换热器的经济性、材料性能、热效率等因素,目前性能较好的间壁式换热器的受热温度可达1000℃左右,得到的预热空气温度达700℃。若再提高预热温度,会出现高NOx问题及因换热器传热面积扩大引起的设备费用增加和换热器本身的寿命问题。而蓄热式换热器因节能的特性以及材料工业的发展而又展现出新的活力。
2 高温空气燃烧技术的由来
1982年英国Hotwork公司和British Gas公司合作,研制出了紧凑型的陶瓷球蓄热系统RCB(Regenerative Ceramic Burner)。系统采用陶瓷球作为蓄热体,比表面积可达240m2/m3,因此蓄热能力大大增强、蓄热体体积显著缩小、换向时间降至1~3min,温度效率明显提高(一般大于80%),而预热温度波动一般小于15℃。在随后几年里,对该蓄热系统又进行了大量的实验研究并作了试用。在不锈钢退火炉、步进梁式炉上的应用均达到了预期的效果,取得了显著的经济效益。
日本在1985年前后详细考察了RCB的应用技术和实际使用情况后,开始进一步研制。20世纪 90年代初,日本钢管株式会社(NKK)和日本工业炉株式会社(NFK)联合开发了一种新型蓄热器,称为陶瓷蓄热系统HRS(Highcycle Regenerative Combustion System)。在蓄热体选取上,采用压力损失小、比表面积更大的陶瓷蜂窝体,以减少蓄热体的体积和重量。为了实现低NOx排放,蓄热体和烧嘴组成一体联合工作,采用两段燃烧法和烟气自身再循环法来控制进气,效果很好。NKK进行了多次试验,对测得的数据进行了分析。结果发现,预加热后进入燃烧器的空气温度已接近废气排放温度。数据显示,空气预热温度达1300℃、炉内O2含量为11%时NOx排放量是40kg/m3 [1]。HRS的开发,不仅实现了烟气余热极限回收及NOx排放量的大幅度降低,而且这种新型燃烧器还引发产生了一种新的燃烧技术——高温空气燃烧技术HTAC(High Temperature Air Combustion)。
HTAC技术在燃烧条件、反应机理、火焰特征等方面均表现得与传统的燃烧技术不同。它是预热空气温度达到800~1000℃以上,燃料在含氧较低(可低至2%)的高温环境中燃烧。因为是在高温条件下,可燃范围扩大,在含氧大于2%时,就可保证稳定燃烧。燃烧过程类似于一种扩散控制式反应,存在局部高温区,NOx在这种环境下生成受到抑制。同时,在这种低氧环境下,燃烧火焰具有与传统燃烧截然不同的特征:火焰体积明显增大,甚至可扩大到整个燃烧室空间;火焰形状不规则,无火焰界面;常见的白炽火焰消失,火焰呈现薄雾状;辐射强度增加,火焰的高度辐射减少。整个燃烧空间形如一个温度相对均匀的高温强辐射黑体,再加上反应速度快,炉膛传热效率显著提高,而NOx排放量大大减少[2]。
3 HTAC技术的工作原理及特点
HTAC的技术关键是采用蓄热式燃烧系统[3]。该系统由燃烧室、2组结构相同的蓄热式燃烧器和1个四通阀组成。燃烧器可对称布置,亦可集中布置。图1为2组燃烧器对称布置时的原理图。当烧嘴A工作时,加热工件后的高温废气经由烧嘴B排出,以辐射和对流方式迅速将热量传递给蓄热体。烟气放热后温度降至200℃以下,经四通阀排出。经过一定时间间隔后,切换阀使助燃空气流经蓄热体B,蓄热体再将热量迅速传给空气,空气被预热至800℃以上,通过烧嘴B完成燃烧过程。同时,烧嘴A和蓄热体A转换为排烟和蓄热装置。通过这种交替运行方式,可以实现烟气余热极限回收和助燃空气的预热。新型的陶瓷蜂窝状蓄热体可以达到排气温度与被预热空气温度之间相差50~150℃。
为了降低NOx生成量,采用两段燃烧法和烟气自身再循环法。图2是蓄热式燃烧器烧嘴的原理图。烧嘴中心是空气流道,喉部周围切线方向上供给一次燃料,喉部出口处和空气流道平行方向上供给二次燃料。一次燃料(比二次燃料少得多)的燃烧属于富氧燃烧,在高温条件下会很快完成。燃烧后的烟气在流经优化设计的喷口后,形成高速气体射流和周围卷吸回流运动,渗混后炉
内含氧浓度可达到5%~15%。大量燃料通过二次燃气通道平行喷入炉内,与炉内含氧浓度较低的烟气混合、燃烧。此时,炉内存在局部炽热高温区,形成温度分布比较均匀的火焰。因此,NOx排放量大大降低。